
Introduction

COMP3607
Object Oriented Programming II

�1

04-Sept-2019

OOP1 Review

Outline
•Course overview
•Review
•OOP1 Concepts
•Object-Oriented Design Principles

�2

Review

•Classes vs Objects
• Instantiation, Initialisation
• Encapsulation and Abstraction
•Associations
• Inheritance
•Polymorphism

�3

Classes vs Objects
A class defines a set of attributes and behaviour.
An object is a concrete manifestation of a class.

�4

Exercise
Identify the classes

�5

String s;
int sum = 1000;
ArrayList list = new ArrayList();

Classes vs Objects

�6

String s;
int sum = 1000;
ArrayList list = new ArrayList();

IDEs can help us out with
colour coded classes

Solution

Exercise
Identify the objects and classes

�7

String s;
double delta = 1.89;
boolean equal = false;
Object object;
Integer count = new Integer(300);

Exercise
Identify the objects and classes

�8

String s;
double delta = 1.89;
boolean equal = false;
Object object;
Integer count = new Integer(300);

Solution

Declaration
The process of associating an object variable name
with an object type (class).

�9

String s;
ArrayList list;
Scanner s;
StringTokenizer st;

Instantiation
The process of creating a new instance of a class.
This is done in order to use the services of a class.
The new keyword is used.

�10

String s = new String();
ArrayList list = new ArrayList();
Scanner s = new Scanner();
StringTokenizer st = new StringTokenizer();

Initialisation
The process of assigning state (values) to an instance
of a class.

�11

String s = new String(“Clear Tape”);
ArrayList list = new ArrayList(10);
Scanner s = new Scanner(“data.txt”);
StringTokenizer st = new StringTokenizer(“;”);

Exercise
Distinguish between instantiation, declaration and
initialisation

�12

String s;
s = “Clear Tape”;
ArrayList stationery;
stationery = new ArrayList();
new File(“stocks.txt”);
String message = new String(“Out of Stock”);

Exercise
Distinguish between instantiation, declaration and
initialisation

�13

String s; // Declaration
s = “Clear Tape”; // Initialisation
ArrayList stationery; // Declaration
stationery = new ArrayList(); //Instantiation
new File(“stocks.txt”); //Instantiation, no Declaration!
String message = new String(“Out of Stock”); //all 3

Solution

Abstraction
“Abstraction is one of the fundamental ways that we as
humans cope with complexity.” (Booch, 1994).

•Recognition of similarities
• Emphasis on significant details
• Independent of implementing mechanism

�14

Abstraction
An abstraction denotes the essential characteristics of
an object that distinguish it from all other kinds of objects
and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer.

�15Observable behaviour

Encapsulation

�16
Hides the details (implementation) that gives rise to observable behaviour

Encapsulation focuses upon the implementation that gives
rise to observable behaviours.

Information Hiding
Encapsulation is most often achieved through information
hiding.
Information Hiding is the process of hiding all the secrets
of an object that do not contribute to its essential
characteristics:
• the structure of an object is hidden
• the implementation of its methods is hidden

�17

Access Modifiers

•Public: A declaration that is accessible to all clients
•Protected: A declaration that is accessible only to the
class itself, its subclasses, and its friends
•Private: A declaration that is accessible only to the
class itself and its friends

�18

public

protected

private

Decreasing level
of access

Interface vs Implementation
The interface of a class provides its outside view and
therefore emphasizes the abstraction while hiding its
structure and the secrets of its behavior.
This interface primarily consists of the declarations of all
the operations applicable to instances of this class, but it
may also include the declaration of other classes,
constants, variables, and exceptions as needed to
complete the abstraction.

�19

Interface vs Implementation

By contrast, the implementation of a class is its inside
view, which encompasses the secrets of its behaviour.
 The implementation of a class primarily consists of the
implementation of all of the operations defined in the
interface of the class.

�20

Relationships
Classes, like objects, do not exist in isolation. Very
often, an object-oriented program consists of a set of
interacting objects whose classes are related in some
way.

Relationships between classes are established to either:
• Indicate some sort of sharing between the classes
• Indicate a semantic connection between the classes

�21Reading: Page 105, Chapter 3 - G. Booch; Page 131, Chapter 7 - P. Mohan

Kinds of Relationships
There are three basic kinds of relationships:
1. Association/Dependency (uses)
2. Generalisation/Specialisation (is-a)
3. Composition/Aggregation (part-of)

�22

Example- Association

�23

Sensor

Air
Conditioner

*
has

1

one-to-many association

Room is cooled by
1 1

one-to-one association

Air
Conditioner

Telemetry
DataSensor

* *
produces

many-to-many association

Example- Association

�24

Sensor

Air
Conditioner

*
has

1

one-to-many association

Room is cooled by
1 1

one-to-one association

Air
Conditioner

Telemetry
DataSensor

* *
produces

many-to-many association

Example - Implementing Associations
public class Room{

private AirConditioner ac;
public Room(){
 ac = new AirConditioner();
}

}

�25

Air
Conditioner

Room is cooled by
1 1

one-to-one association

public class AirConditioner{
private Sensor[] sensors;
public AirConditioner(){
 sensors = new Sensor[3];
}

}

�26

Sensor

*
has

1

one-to-many association

Air
Conditioner

Example - Implementing Associations

Exercise
Identify the objects and their associations in the
following scenario.

�27

A point-of-sale (POS) system is a computerised
application used in a retail store to record sales and
handle payments.

Exercise
Identify the objects first

�28

Solution

A point-of-sale (POS) system is a computerised
application used in a retail store to record sales and
handle payments.

Objects

Exercise

A point-of-sale (POS) system is a computerised
application used in a retail store to record sales and
handle payments.

Next, identify the main associations between the
objects.

�29

Solution

Associations
has

has records

Exercise

�30

Solution

Cardinalities

Retail-store
Point-of-sale

Sale
Payment

has

has records
1

0..*1

1

1

1..*

Clean up and assign cardinalities.

Inheritance
Inheritance is a relationship among classes wherein one
class shares the structure and/or behaviour defined in
one (single inheritance) or more (multiple inheritance)
other classes (Booch 1994).

A class from which another class inherits its structure
and/or behaviour is called the superclass. A class that
inherits from one or more classes is called a subclass

�31

Example - Inheritance

�32

Sensor

Temperature
Sensor

Thermocouple
Sensor

Ultrasonic
Sensor

▻ ▻
Distance
Sensor

▻ ▻

is-ais-a

is-a is-a
▻

RTD
Sensor

is-a

(More general class)

(More specific class)

(Superclass)

(Subclass)

Example Implementing Inheritance

public class TemperatureSensor extends Sensor{
}

�33

Sensor

Temperature
Sensor

▻

is-a

public class Sensor{
private String unit;
private double maxRangeValue;
private double minRangeValue;
private int responsivenessLapse;

public Sensor(){
}
//accessors & mutators

}

TemperatureSensor t = new TemperatureSensor();
t.setUnit();
t.getMinRangeValue();
t.getUnit();
t.unit = “Celsius”;

Client class

✓
✓

✓

Example Implementing Inheritance

public class TemperatureSensor extends Sensor{
}

�34

Sensor

Temperature
Sensor

▻

is-a

public class Sensor{
protected String unit;
protected double maxRangeValue;
protected double minRangeValue;
protected int responsivenessLapse;

public Sensor(){
}
//accessors & mutators

}

TemperatureSensor t = new TemperatureSensor();
t.setUnit();
t.getMinRangeValue();
t.getUnit();
t.unit = “Celsius”;

Client class

✓
✓

✓ ✓

Exercise
Identify the objects and their relationships in the
following scenario.

�35

Payments can be either cash or card payments.
Card payments can be either debit card or credit
card. Credit card payments are subject to a 4% fee.

Exercise
Identify the objects

�36

Payments can be either cash or card payments.
Card payments can be either debit card or credit
card. Credit card payments are subject to a 4% fee.

Solution

Objects

Exercise
Identify relationships

�37

Solution

Relationships

Payments can be either cash or card payments.
Card payments can be either debit card or credit
card. Credit card payments are subject to a 4% fee.

is_a
is_a

is_a

Exercise
Fine tune

�38

Solution

Relationship details

is_a

is_a

is_a

Payment

Cash Payment

Card Payment

Linx Card Payment

Credit Card Payment

is_a

<<interface>> <<abstract>>

Polymorphic Objects

�39

When the static type and the dynamic type of an object
are different, that object is said to be polymorphic.
A polymorphic object exhibits different behaviour based
on the differences between its static type and dynamic
type.

Example - Polymorphic Objects

�40

Sensor

▻

is-a

Temperature
Sensor

▻

is-a

Thermocouple
Sensor

Sensor ts = new ThermocoupleSensor();

//ST: Sensor, DT: ThermocoupleSensor

TemperatureSensor ts = new TemperatureSensor();

//ST: TemperatureSensor, DT: TemperatureSensor

Object o = new ThermocoupleSensor();

//ST: Object, DT: ThermocoupleSensor

Abbreviations:
ST - Static type; DT - Dynamic type

(Only 2 objects are Polymorphic)

References

•Booch, Grady. (1988) OBJECT-ORIENTED ANALYSIS
AND DESIGN
•Mohan, Permanand (2013) FUNDAMENTALS OF
OBJECT-ORIENTED PROGRAMMING IN JAVA

�41

