
COURSE TITLE: Object-Oriented Programming II

COURSE CODE: COMP 3607

TYPE: Elective

LEVEL: 3

SEMESTER: 1

START DATE: SEP-02-2019

DEPARTMENT and FACULTY: DCIT/FST

CREDITS: 3

PRE-REQUISITE(S): COMP 2603

ESTIMATED STUDY HOURS:

Two 1-hour lectures, One 2-hour lab, 6 hours per week independent study

Lectures:

LECTURER: 	 Dr. Phaedra Mohammed 	 (Phaedra.Mohammed@sta.uwi.edu)

Office Hours: 	 Mondays 10:00 a.m. to 11:00 a.m.

	 	 	 Wednesdays 10:00 a.m. to 11:00 a.m.

TUTOR: 	 	 Mr. Jason Mungal	 	

COURSE OVERVIEW

This course looks at the main tools of modern object-oriented software development. These
include design-support techniques and tools (principally design patterns) and programming-
support tools (principally IDEs). The course has a strong emphasis on project design and
programming using object-oriented software design patterns. Each pattern represents a best
practice solution to a software problem in a specific context and the course examines the
rationale and benefits of using patterns for such cases. Numerous problems will be studied to
investigate the implementation of good design patterns.

Computer programmers and software engineers must be able to use a variety of programs and
systems for designing solutions to common information technology issues. The object-oriented
programming paradigm has made it easier to handle software development involving complex
tasks since it easily facilitates the decomposition of problems into modular entities. The course
will allow students to practice advance concepts in object-oriented design. This course will help
motivated students to be primary contributors to any small to mid-sized commercial or open-
source software project.

Day Time Room

Monday 9:00 a.m. to 9:50 a.m. FST 114

Wednesday 9:00 a.m. to 9:50 a.m. FST 113

Friday 12:00 p.m. to 1:50 p.m. CSL2

mailto:phaedra.Mohammed@sta.uwi.edu

COURSE CONTENT
1. Principles of good software design. Examine what causes software to rot.

2. Unified Modelling Language (UML) - Class, Sequence and Use-Case Diagrams

3. Design Patterns: Strategy, Observer, Factory, Singleton, FlyWeight, Command, Adapter,

Facade, Template Method, Iterator, Composite, State, Proxy and Mediator

4. Object Persistence using relational databases and other forms

5. Model View Controller (MVC) architecture

6. Concepts of Code Refactoring and testing

COURSE LEARNING OUTCOMES

Upon the successful completion of this course, the student will be able to:

1. Analyze problems using UML tools

2. Design object-oriented solutions using UML tools

3. Discuss the principles of good object-oriented design

4. Use design patterns to facilitate good object-oriented design

5. Explain the reasoning for each object-oriented design principle.

6. Apply knowledge of design patterns to solve common programming problems

7. Draw high level class diagrams in UML for each pattern.

8. Describe the consequences of applying each pattern to the overall software quality of a

system.

COURSE ASSESSMENT (Approximate)

TEACHING STRATEGIES
Problem-based learning will be used as the main teaching strategy for the course. Interactive
lectures and labs will be used to demonstrate, in a practical manner, the concepts taught in
lectures. Feedback from assignments/problem sheets/course work tests will be used to tailor
subsequent lectures/tutorials as necessary. Further, students will be given ample opportunity to
develop correct, readable programs using object-oriented programming techniques.

Assessment Learning Outcomes Weighting % Assessment
Description

1 2 3 4 5 6 7 8

Assignment 1 X X X X

20%

Programming
problems,

design
exercises,

short answer
questions

Assignment 2 X X X X X X

Assignment 3 X X X X X X X

Coursework Exam 1 X X X X X X
30%

Problems and
short answer

questionsCoursework Exam 2 X X X X X X X

Final Examination X X X X X X X X 50%
Problems and
short answer

questions
TOTAL % 100%

RESOURCES

Lecture notes: Available on myElearning - see course website

Reading Materials (Selected Chapters):
• Craig Larman (1998). Applying UML and Patterns. An Introduction to Object-Oriented

Analysis and Design. Prentice Hall.

• Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides (1977). Design Patterns.

Elements of Reusable Object-Oriented Software. Addison-Wesley.

• Martin Fowler (1999). Refactoring: Improving the Design of Existing Code. Prentice Hall.

• Permanand Mohan (2013). Fundamentals of Object-Oriented Programming in Java,

CreateSpace Independent Publishing Platform. ISBN-10: 1482587521

• Harvey Deitel and Paul Deitel (2002). Java: How to Program, 5th Edition. Prentice-Hall.

• Bruce Eckel (2002). Thinking in Java, 3rd Edition. Prentice-Hall. Free electronic copy

available on the Internet from http://www.mindview.net/Books/TIJ/.

Design Tools and IDEs:
• StarUML: http://staruml.io/

• IntelliJ IDEA: https://www.jetbrains.com/idea/

• Netbeans: https://netbeans.org/

COURSE CALENDAR (Approximate):

Week Topic

1-2 UML - Class, Sequence and Use-Case Diagrams using a UML Modelling Tool

Principles of good software design. Software rot.

Introduction to Code Refactoring

Introduction to Design Patterns: Singleton
Assignment 1 (Released: Week 2)

3-7 Strategy, Observer, Factory, FlyWeight, Command, Adapter, Facade,
Template Method, Iterator, Composite, State, Proxy and Mediator

Assignment 2 (Released: Week 5)
Course work Exam 1 (Week 6)

8 Code Refactoring and Testing (JUnit)

Assignment 3 (Released: Week 9)

9 Model View Controller architecture

10 Course work Exam 2 (Week 10)

11 Object Persistence: using relational databases

12 Putting it all together

13 Revision

http://64.78.49.204/TIJ-3rd-edition4.0.zip
http://staruml.io/
https://www.jetbrains.com/idea/
https://netbeans.org/

