
Introduction to Java

COMP2603
Object Oriented Programming 1

1

Week 1

What do you think of when you hear the
term “Java”?

2

Outline
• The Beginnings of Java
• Language goals

• Java Platform
• JVM, API

•Differences with C, C++
• Java Language Features
•Primitive Data Types: Numeric, Character, Boolean
•Arithmetic, Relational Operators
•Class Types: Arrays, Strings
•Conditional Statements
• Loops, Switch Constructs

3

History of the Java Language
The first version of Java was meant for programming home
appliances back in 1991 (heterogeneous, network-wide
distributed environments).
James Gosling (Sun Microsystems Inc) and his team needed a
language that would work on variety of computer processors.
They designed a language in 1994 that evolved into the Java
language which turned out to be ideal for developing web
browsers.
Netscape Inc made its browsers Java compatible in 1995 and
others followed suit.

4

Goals/ Java Language Features
•Simple
•Object oriented
•Distributed
•Multithreaded
•Dynamic
•Architecture neutral
•Portable
•High performance
•Robust
•Secure

5

James Gosling and Henry McGilton. 1996. The Java Language Environment: Contents

https://www.oracle.com/java/technologies/language-environment.html

Java Platform
" A platform is the hardware or software environment in
which a program runs.
Popular examples of platforms are Microsoft Windows,
Linux, Solaris OS, and Mac OS. Most platforms can be
described as a combination of the operating system
and underlying hardware.
The Java platform differs from most other platforms in
that it's a software-only platform that runs on top of
other hardware-based platforms. "

6

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java Platform
The Java platform has two components:
• The Java Virtual Machine (JVM)
• The Java Application Programming Interface (API)

7

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

Java Virtual Machine
Java Virtual Machine (JVM) is a engine that provides
runtime environment to drive the Java Code or
applications. It converts Java bytecode into machines
language. JVM is a part of Java Run Environment (JRE).

8
https://www.guru99.com/java-virtual-machine-jvm.html

Java Virtual Machine

9
https://www.guru99.com/java-virtual-machine-jvm.html

https://www.youtube.com/watch?v=G1ubVOl9IBw

Garbage Collector
The Java run-time system manages natural pauses
typical during user-driven software use by recovering
and compacting fragments of unused memory.
The garbage collector is run as a low-priority thread
during idle periods. Unused portions of memory are
gathered and reallocated for use during periods of
heavy interactive use.

10

Java API
“Java application programming interface (API) is a list of
all classes that are part of the Java development kit
(JDK).
It includes all Java packages, classes, and interfaces,
along with their methods, fields, and constructors.
These prewritten classes provide a tremendous amount
of functionality to a programmer.”
 http://www.saylor.org/courses/cs101/#1.3.5.3
We will use the latest version, Java 11, in this course:

11

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

http://www.saylor.org/courses/cs101/#1.3.5.3

Source files
In the Java programming language, all source code is
first written in plain text files ending with the .java
extension.
Those source files are then compiled into .class files by
the javac compiler.
A .class file does not contain code that is native to your
processor; it instead contains bytecodes — the
machine language of the Java Virtual Machine (Java
VM).
The java launcher tool then runs your application with an
instance of the Java Virtual Machine.

12
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

13

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html

Source files

Modern Programming Languages
Most modern programming languages are designed to
be relatively easy for people to write and understand.
These are called high-level languages. Eg. Pascal, C,
C++, HTML, Java.

14

Features Removed from C and C++
•No More Typedefs, Defines, or Preprocessor
• #define, typedef
• Instead of header files - Java source files provide declarations of other classes

and methods

•No More Structures or Unions
• Classes with instance variables are used

•No Enums
• Classes with variables are used as constants

15https://www.oracle.com/java/technologies/simple-familiar.html

Features Removed from C and C++
•No More Functions
• Object-oriented programming supersedes functional and procedural styles

•No More goto Statements
• Multi-level break and continue statements used instead

•No More Automatic Coercions
• Loss of precision would result. Instead explicitly cast.

•No More Pointers
• Since no structures, arrays and string are full objects, then no need for pointer

data types (avoids dangling pointers, trashing of memory).

16https://www.oracle.com/java/technologies/simple-familiar.html

Object-Oriented Programming
Java was designed for object-oriented programming.
Several important concepts will be covered in the next
few weeks:
• Encapsulation (information hiding)
•Abstraction

17

Java Language Features

18

Java Program Format

//import statements

public class ClassName{
public static void main(String[] args){

// code goes here
}

}

19

The name of your class

ClassName.java ClassName.class

Java Keywords

20

https://docs.oracle.com/javase/specs/jls/se8/html/jls-3.html

Variables
Variables in a program store data such as numbers and
letters. These data items are called values.
numberofbaskets
int numberOfBaskets; //declaration

numberOfBaskets = 10; //initialisation

Variables must be declared before they can be used. The
variable’s type determines the kind of value that the
variable can hold.
Conventions and naming rules: start with lowercase
letter, follow camelCase, and use meaningful names.

21

https://en.wikipedia.org/wiki/Camel_case

Types of Variables
There are two main kinds of types in Java: primitive types
and class types.
Primitive Type: simple, indecomposable values e.g. int,
double, char, float
Example:

int numberOfBaskets;
char symbol = ‘A’;

Class Type: specifies a type for an object that has both
data and methods.
Example:

Calculator calculator;

22

Java Program with Variables

//import statements

public class MathDemo{
public static void main(String[] args){

int operator1 = 10;
int operator2 = 20;

}

}

23

Primitive Types

24

Type Name Kind of Value Fill in Examples

byte integer

short integer

int integer

long integer

float floating-point number

double floating-point number

char single Unicode
character

boolean true or false

At-Home
Exercise

The Class String
Strings of characters are treated differently from values of
primitive types. There is no primitive type for strings in Java.
The String class is used to store and process strings of
characters.

Example 1:
String greeting; //declaration
greeting = “Hello, pleased to meet you”; //initialisation

Example 2:
String name = “Alice”; //declaration and initialisation

25

Java Operators

26https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Java Program with Operators

//import statements

public class MathDemo{
public static void main(String[] args){

int operator1 = 10;
int operator2 = 20;
String output = “”;
int result = operator2 - operator 1;
//concatenation of Strings
output = output + “The result is: ”;

}
}

27

Expressions, Statements, and Blocks

28

Operators: used in building expressions, which compute
values
Expressions : the core components of statements
Statements may be grouped into blocks

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

Expressions

29

An expression is a construct made up of variables,
operators, and method invocations, which are constructed
according to the syntax of the language, that evaluates to a
single value. Examples of expressions have been used in the
examples so far.

Avoid ambiguous expressions.

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

Statement

30

Statements are roughly equivalent to sentences in natural
languages. A statement forms a complete unit of execution.
The following types of expressions can be made into a
statement by terminating the expression with a semicolon (;).

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/expressions.html

•Assignment expressions
•Any use of ++ or --
•Method invocations
•Object creation expressions

Block

31

A block is a group of zero or more statements between
balanced braces and can be used anywhere a single
statement is allowed.

Java Program with Expressions,
Statements, Blocks

//import statements

public class MathDemo{
public static void main(String[] args){

int operator1 = 10;
int operator2 = 20;
String output = “”;
//Expression
int result = (operator2 - operator 1)/100;
//Avoid: int result = operator2 - operator 1/100;

//concatenation of Strings
output = output + “The result is: ”;

}
} 32

Control Flow Statements

33

These employ decision making, looping, and branching,
enabling your program to conditionally execute particular
blocks of code.

•Decision-making statements (if-then, if-then-else, switch)
• Looping statements (for, while, do-while)
•Branching statements (break, continue, return)

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/flow.html

//import statements

public class MathDemo{
public static void main(String[] args){

int operator1 = 10;
int operator2 = 20;
String output = “”;
int result = (operator2 - operator 1)/100;
output = output + “The result is: ”;
if(result%2 == 0){

output += “ ”;
}
else{

output += “ ”;
}

}
}

Java Program with Control Flow
Statements

34

Fill in appropriate words to
complete the statements

Methods
A method is an action that an object is a capable of
performing. Asking an object to perform that method is
called invoking the method or calling the method.
Example:

calculator.add(3,4);

Syntax:
objectName.methodName(arguments..);

35

dot

Simple Input from the Screen
The Scanner class is typically used for reading input
data.
Example:

Scanner screen = new Scanner(System.in);
 int i = screen.nextInt();

36
https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

https://docs.oracle.com/javase/7/docs/api/java/util/Scanner.html

Simple Output to the Screen
The System class is typically used for printing output
data to the screen.
Example:

System.out.println(“Hello”);

37
https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

https://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html

import java.util.Scanner; //import statement

public class MathDemo{
public static void main(String[] args){

int operator1 = 10;
int operator2 = 20;
String output = “”;
int result = (operator2 - operator 1)/100;
output = output + “The result is: ”;
if(result%2 == 0){

output += “even”;
}
else{

output += “odd”;
}
System.out.println(output);

}
}

Java Program with Control Flow
Statements

38

Exercise

39

Write a simple Java program that prints the statement:
Hello World

Your class should be named appropriately.

3 mins

//import statements

public class ClassName{
public static void main(String[] args){

// your code goes here
}

}

Class structure

First Java Program

40

Write a simple Java program that prints the statement:
Hello World

public class FirstProgram{
public static void main(String[] args){

System.out.println(“Hello World”);
}

}

Exercise Two

41

Write a simple Java program that accepts a user’s name
from the screen, stores the value in a String variable and
prints a greeting with the format:
Hello <username>

5 mins

//import statements

public class ClassName{
public static void main(String[] args){

// your code goes here
}

}

Class structure

Scanner screen = new Scanner(System.in);
 int i = screen.nextInt();

Second Java Program
import java.util.Scanner;

public class SecondProgram{
public static void main(String[] args){

Scanner screen = new Scanner(System.in);
String name = screen.next();
System.out.print(“Hello ”);
System.out.print(name);

 System.out.println(“Hello ” + name);
}

}

42

Summary

43
Homework: Read Language Basics and all subsections

Today, you learned about:
•History of the Java language
• Important features and comparisons to other languages
• Java language basics (variables, classes, methods)
•How to write a simple Java program
• Java API and how to use it (Scanner)

References - Required Reading

• https://docs.oracle.com/javase/tutorial/getStarted/intro/
definition.html
• https://www.oracle.com/java/technologies/language-
environment.html
• https://docs.oracle.com/javase/specs/jls/se15/html/
index.html
• https://docs.oracle.com/javase/tutorial/java/
nutsandbolts/index.html

44

https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html
https://www.oracle.com/java/technologies/language-environment.html
https://www.oracle.com/java/technologies/language-environment.html
https://docs.oracle.com/javase/specs/jls/se15/html/index.html
https://docs.oracle.com/javase/specs/jls/se15/html/index.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/index.html

